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Definition (Field)

A field F = {F ,+, ·} is an algebraic structure formed by a set F ,
and closed under binary operations + (addition) and ·
(multiplication). The addition operation

• is associative, commutative

• has a unique 0 and inverse element

The multiplication operation

• is associative, commutative and distributive

• has a unique 1

• has a unique inverse for nonzero element

Example

The set of real numbers together with + and × is a field.
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Definition (Vector Space)

A vector or linear space V defined over a field F is the set V
(vectors) that is closed under binary operations + (vector addition)
and · (scalar multiplication). Vector addition satisfies

• associative, commutative

• has a unique 0 and inverse element

The scalar multiplication satisfies

• associative, distributive

• has a unique 1
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Vector Space

Theorem
X is some nonempty set. The set of all functions f : X → F with

• (f + g)(x) = f (x) + g(x)

• (αf )(x) = αf (x), α ∈ F

is a vector space.

Example

In the above theorem,

• X = {1, 2, · · · , n} and F = R: the vector space is the set of
vectors in Rn, denoted by Vn(R)

• X = N and F = R: sequences

• X = {{1, · · · ,m} × {1, · · · , n}} and F = R: set of m × n
matrices

4 / 18



Vector Space

Definition (Vector Subspace)

(V ,+, ·) is a vector space over the field F . (S ,+, ·) is a vector
subspace of (V ,+, ·) if S ⊂ V , and for all α, β ∈ F , and for all
x , y ∈ S , αx + βy ∈ S .

For a set A ⊂ V . Define span(A) as the set of all vectors that are
linear combinations of elements in A.

Exercise
Show that span(A) is the intersection of all vector subspaces of V
that contain A.
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Linear Independence

Definition (Linear Independence)

A set of vectors {x1, · · · , xn} is linearly dependent if∑n
i=1 αixi = 0 and αi 6= 0 for some i . It is linearly independent if∑n
i=1 αixi = 0 implies that αi = 0 for all i .

Exercise
Show that {x1, · · · , xn} is linearly dependent if a subset of vectors
is linearly dependent.
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Basis

Definition (Basis)

A subset W spans or generates V if for all x ∈ V , x =
∑n

i=1 αiwi ,
wi ∈W and n is finite. A Hamel basis for a vector space V is a
set of vectors that is linearly independent and spans V . The
cardinal number of the Hamel basis is the dimension of the vector
space V (dim V ).

Denote a Hamel basis for vector space V as {vs ∈ V , s ∈ S} where
S is an index set. For a vector x ∈ V , it can be represented by a
linear combinations of vectors in the Hamel basis in the sense that
x =

∑
i∈S ′ αivi and S ′ is a finite subset of S .

Theorem
Every nonzero vector has a unique representation with respect to a
Hamel basis.
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Basis

Exercise
Consider the set {(x1, x2, x3) ∈ R3, x1 + x2 = x3}. Show that it is a
vector subspace of R3 and find a basis. What is its dimension?
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For a finite dimensional vector space (e.g. R3), every basis has the
same number of elements, and every linearly independent set of
vectors of dimension dim(V ) is a basis. We show this in the
following two theorems.

Theorem
If {v1, · · · , vn} is a basis of V , then no set of more than n vectors
is linearly independent.

Theorem
The vector space V has dimension n. Any linearly independent set
of n vectors is a basis of V .
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Linear Transformations

We first consider the general case with two vectors spaces X ,Y
defined over the same field F .

Definition (Linear Transformation)

A transformation T : X → Y is a linear transformation if for all
x1, x2 ∈ X and α, β ∈ F ,

T (αx1 + βx2) = αT (x1) + βT (x2).

Denote L(X ,Y ) as the set of all linear transformations from X to
Y . The following theorem establishes that L(X ,Y ) is itself a
vector space.

Theorem
The set of all linear transformations from X to Y is a vector space.
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Consider a linear function T : X → Y .

Definition (Image and Kernel)

• Image or range:
im(T ) = T (X ) = {y ∈ Y , y = T (x) for some x ∈ X}.

• Kernel of null space: ker(T ) = {x ∈ X ,T (x) = 0}.

Theorem
For a linear transformation, T (x) is a vector subspace of Y . If
{v1, · · · , vn} is a basis for X , then {T (v1), · · · ,T (vn)} spans
T (x).

Similar results also hold for the null space.

Theorem
For a linear transformation, ker(T ) is a vector space of X .
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An important connection between the dimensions of the image,
kernel and the underlying vector space is established in the
following theorem.

Theorem
T : X → Y is a linear transformation and X is a finite dimensional
vector space.

dim (X ) = dim ker(T ) + dim im(T ).

dim im(T ) is also called the rank of T .
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Inverse of a Linear Transformation

Definition
T : X → Y is a linear mapping. T is invertible if there exists
S : Y → X , such that

∀x ∈ X ,S(T (x)) = x

∀y ∈ Y ,T (S(y)) = y .

If such S exists, it is the inverse of T : T−1 = S .

From the definition, we can see that if T is invertible, it needs to
be injective (one-to-one) and surjective (onto).

Theorem
A necessary and sufficient condition for T to be injective
(one-to-one) is that its null space is {0}.
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Inverse of a Linear Transformation

Another important property with the inverse of a linear
transformation is that it is still linear.

Theorem
If T ∈ L(X ,Y ) is invertible, then T−1 ∈ L(Y ,X ).
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Matrix Representation of a T

Let X and Y be finite dimensional vector spaces with dimensions n
and m, and basis {v1, · · · , vn} for X and {w1, · · · ,wm} for Y . A
linear mapping T : X → Y can be represented by a m × n matrix
MT , where the i-th column of MT is given by the vector of
coordinates for T (vi ) with respect to basis {w1, · · · ,wm}, i.e.

coli (MT ) = crdW(T (vi )).

The matrix representation can be seen as a function from L(X ,Y )
to Fm×n. It can be shown that the matrix representation is

• linear

• injective and surjective.

Therefore the matrix representation captures all the essential
properties of a linear mapping (isomorphic) in finite dimensional
vector spaces.
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Norm of a Linear Mapping

For a linear mapping T ∈ L(X , y = Y ), define its norm by

||T || = sup{||T (x)||
||x ||

, x ∈ X , x 6= 0}.

Theorem
Let T ∈ L(Rn,Rm) with matrix representation A. Let
µ = maxi ,j{Aij}, the norm of T can be bounded by

µ ≤ ||T || ≤ µ
√

mn.
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Change of Basis

• Matrices A and B are similar if for some invertible matrix P,
P−1AP = B.

• For a linear mapping T : V → V , and let A = {a1, · · · , an}
and B = {b1, · · · , bn} be two basis of V . The matrix
representation of T with respect to A is in general different
from the representation with respect to B. However, these
two matrices are similar.
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Eigenvalues and Eigenvectors

• A is an n × n matrix. If Av = λv for some nonzero vector v
and scalar λ, then λ is an eigenvalue of A and v the
corresponding eigenvector.

•
∏n

i=1 λi = |A|.
•
∑n

i=1 λi = tr(A).

• If A is triangular, then λi = Aii .

• An n × n matrix with n linearly independent eigenvectors is
diagonalizable, i.e. E−1AE = Λ where E is the matrix of
eigenvectors and Λ is a diagonal matrix with corresponding
eigenvalues in the diagonal.
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